

Managing Singapore's Used Water Network

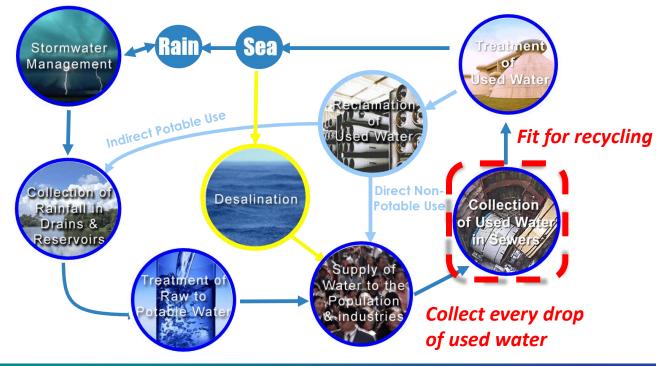
MAKE

EVERY

RA

OU

Wong Kin Wee Principal Engineer Water Reclamation (Network) Department0


- Singapore's Water Loop and Used Water Network
- Overview of Public Sewerage System
- Objective of Sewer Analytics & Management System (SAMS)
- Ultrasonic-Pressure Hybrid Sensors
- Machine Learning
- Presentation by DHI Water & Environment

PUB's Water Loop

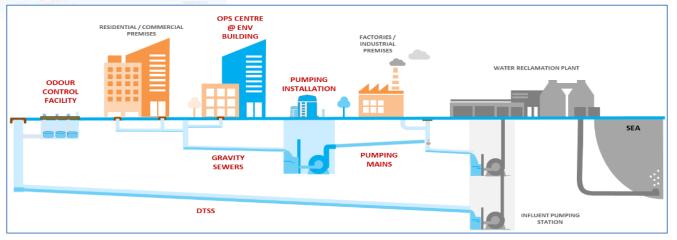
PUB's used water network is part of the water loop that we manage

From sourcing, collection, purification and supply of drinking water, to treatment of used water and turning it into NEWater, drainage of storm water

3 Strategic Objectives of the Water Reclamation Network

- o Public health
- Prevent pollution to environment
- Safeguard used water as a resource

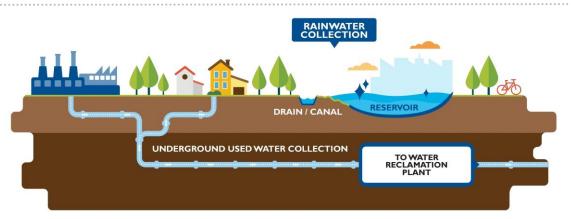
Singapore's Public Sewerage System


Key Figures

3,600 km of Sewers & 100,000 Manholes

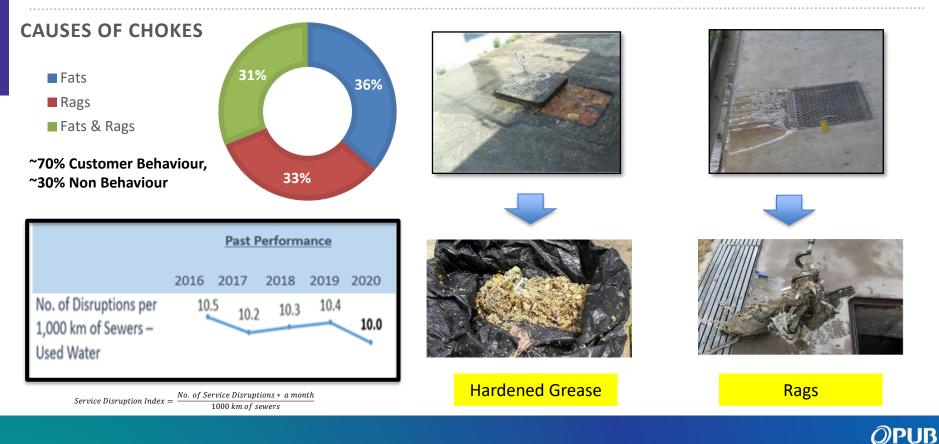
48 km of DTSS Tunnels

10 Odour Control Facilities


72 Pumping Installations & 70 km of Pumping Mains

Used Water Network as A Separate System

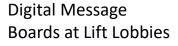
- Separate collection systems for used water and rainwater
- Used water Recycling to become NEWater
- Rain water Treatment to become potable water
- Maintenance to prevent overflows and safeguard public health



Sewerage (used water)

Drainage (rainwater)

Causes of Chokes and their Causes



How are we Tackling Behavioral/ Non- Behavioral Issues

Behavioral

Active Engagement of public through:

Road Shows/ Exhibitions

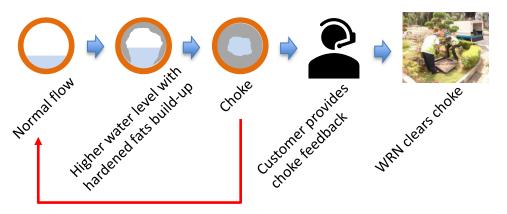
Engagement at premises

Non - Behavioral

Inspection and sampling at premises

Routine Cleaning

Topic Focus


How PUB intends to Improve How We Carry Out Maintenance

Currently:

- Reactive
- Relying on choke feedbacks to identify problematic locations
- Sewers with > 2 chokes / yr will be placed under routine cleaning

Future:

- Proactive
- Flush sewers more frequently
- Flush before choke occurs

☆ Flush before choke occurs

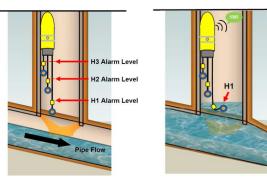
Reduce Chokes

by monitoring and predicting fats build-up through 3 Pronged Approach

Primary Approach: Sensors

Reduce chokes by detecting water level buildup in sewers through a network of sensors and taking pre-emptive action

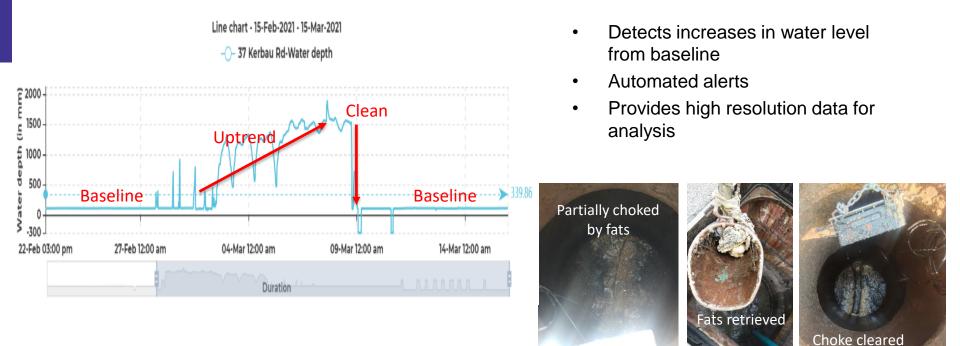
<u>Secondary Approach: Machine Learning</u> Use ML to predict sewers that are likely to choke and inspect pre-emptively



<u>Tertiary Approach: Cleaning Scheduler</u> Augment the primary approach by dynamic scheduling of routine sewer cleaning before chokes occur

Primary Approach: Ultrasonic-Pressure Hybrid Sensors

Currently in Use: Float switches


- Discrete levels
- Alerts after water levels exceed the crown of the pipe

Tested : Ultrasonic – pressure hybrid sensors Ultrasonic Pressure reading dead band starts here

- Continuous data
- Able to show the changes in water level with time

States and Life

~10 chokes detected and cleared during 1 year period (20 sensor installed within Proof of Concept zone)

No.	Date	Location
1	10 Dec 2020	67 Kerbau Road
2	8 Mar 2021	37 Kerbau Road
3	8 May 2021	Lor 34 Geylang
4	28 May 2021	268 Geylang Road
5	2 Jun 2021	Campbell Lane
6	4 Aug 2021	Adam Road FC
7	26 Oct 2021	Adam Road FC
8	3 Jan 2022	Adam Road FC
9	7 Jan 2022	37 Kerbau Rd
10	8 Jan 2022	93 Lavender Street

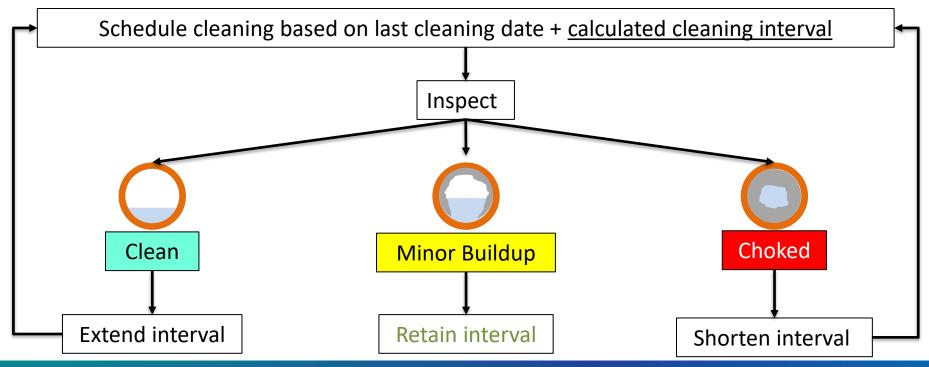
Secondary Approach – Machine Learning

Data-driven predictions

- Use past years of data train ML model to predict chokes
- Constant retraining with new data
- Monthly choke prediction list

Inspection Priority (update: 16/03/2022)

Prioritised for inspection & maintenance


Search						
Subcatchment 🔶	SID	Area 🍦	RENE	Inspection Priority 🕴	Postal Code 🍦	Address
KC-TN87	3410850	KC	Yes	1	207713	SYED ALWI ROAD
KC-TN108	169819	KC	Yes	1	321106	JALAN RAJAH
KC-TN87	148647	KC	Yes	1	207710	SYED ALWI ROAD
KC-TN87	148648	KC	Yes	1	207278	VERDUN ROAD
KC-TN87	148869	KC	Yes	1	207713	SYED ALWI ROAD
KC-TN87	3405245	KC	Yes	1	207721	SYED ALWI ROAD
KC-TN87	3409078	KC	Yes	1	207713	SYED ALWI ROAD
KC-TN108	169814	KC	Yes	1	320107	JALAN RAJAH

Inputs **Float switch** Rainfall sensors Water consumption **Choke records Output Choke prediction**

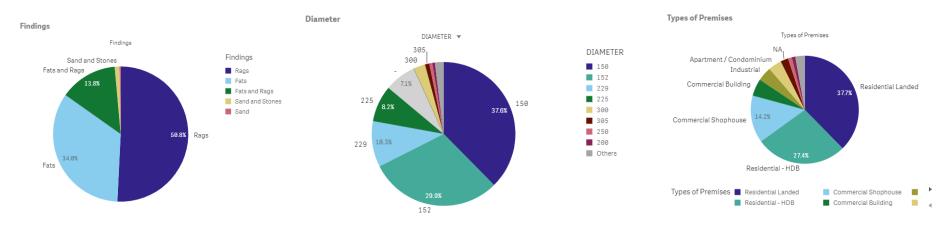
Adjusts routine maintenance schedule according to choke & cleaning data

MAKE EVERY DROP OUN

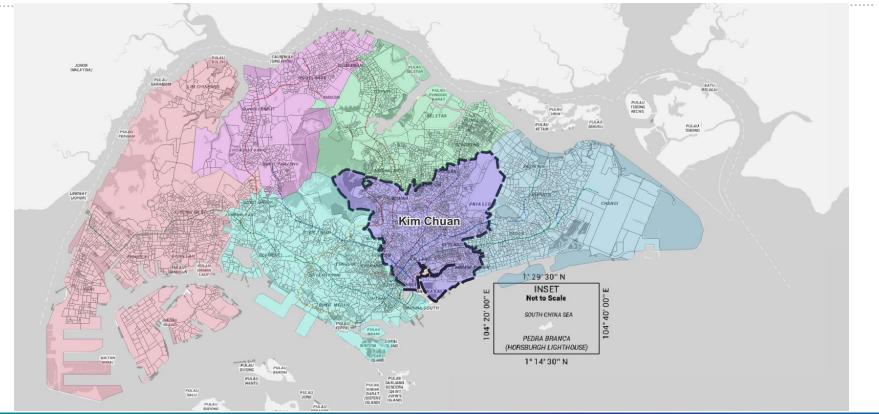
Thank You

SAMS Machine Learning

Veradej Phipatanasuphorn 2022-03-14

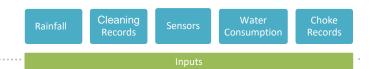


© DHI A/S

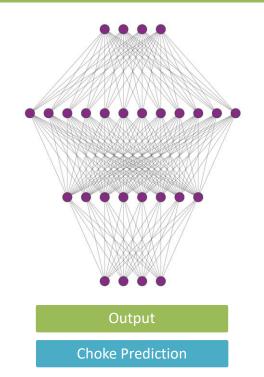

Machine Learning Problem Statement

- Predict Potential Choke Locations in Advance
 - Extreme event forecasting happened only at the same pipe a few times in a year or many years)
 - Choke process is not always deterministic Rags, Fat, Sands, etc.

Machine Learning – Proof of Concept Area (Kim Chuan Catchment)



© DHI A/S



Machine Learning Methodology

- Identify key features that influence the choke incidents
- Select best model to key features with the choke incidents
 - Train, Test and Verify
- Make use of data from 2017 present
- Prediction outcome is used to prioritize inspection & maintenance of pipes

Machine Learning (Neural Network)

Update Data

Cleaning records, choke cases, rainfall, ReNe (level sensors), water consumption

Sub-catchment level Prediction (LSTM-Long/Short term memory) To identify area of attention at sub-catchment level (more information)

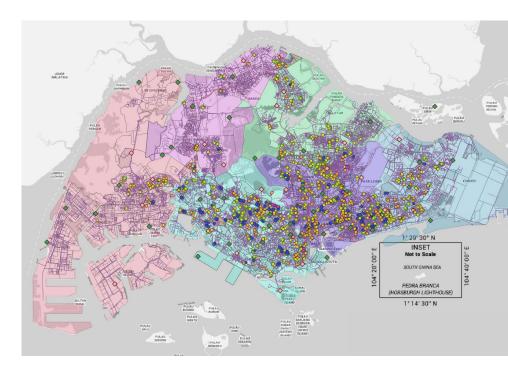
Pipe level Prediction (LSTM- Long/Short Term memory) To identify pipes for high-priority pipes within sub-catchment

Hit Rate

ML ranks its predictions into 7 priority levels Priority 1 has the highest likelihood to choke Only 1-4 are checked with the available resources

Month	Predictions (Total no. of predictions from ML)	Checks (Priority 1-4 out of 7 only)	Chokes (full and partial)	Hit rate Chokes Checks
Aug 2021	420	65	3	5%
Sep 2021	422	11	3	27%
Oct 2021	421	31	0	0%
Nov 2021	460	24	3	13%
Dec 2021	433	21	2	10%
Jan 2022	467	44	7	16%
Feb 2022	539	22	1	5%
Mar 2022	491	23	9	39%

Similar ML study for Sydney Water has accuracy of 10 - 40% with 13 years of training data (2001 – 2014).



Machine Learning Challenges and Future Plan

- Key Challenges for ML model
 - Need lots of data
 - Produced balanced training data for rare events
- Future Plan
 - Deploy sensors for entire Singapore (Currently only for Kim Chuan Catchment)
 Expand ML prediction for entire SG
 - Improved ML prediction with targeted type of choke and better sensor data → Further optimized pre-emptive Cleaning

© DHI A/S